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Abstract. A well-known result due to Vickery gives a mechanism for selling a
number of goods to interested buyers in a way that achieves the maximum so-
cial welfare. In practice, a problem with this mechanism is that it requires the
buyers to specify a large number of values. In this paper we study the problem
of designing optimal mechanisms subject to constraints on the complexity of the
bidding language in a setting where buyers have additive valuations for a large set
of goods. This setting is motivated by sponsored search auctions, where the val-
uations of the advertisers are more or less additive, and the number of keywords
that are up for sale is huge. We give a complete solution for this problem when the
valuations of the buyers are drawn from simple classes of prior distributions. For
a more realistic class of priors, we show that a mechanism akin to the broad match
mechanism currently in use provides a reasonable bicriteria approximation.

1 Introduction

Consider the following setting: there are m buyers who are interested in buying n goods,
each with a unit supply. Each buyer has a value for each good, and her valuation for a
bundle of goods is simply the sum of her valuations for each good in the bundle.

This is perhaps the simplest model for selling multiple non-identical goods, as the
buyers’ valuations are assumed to be additive and not combinatorial. From a mechanism
design perspective, designing optimal (i.e., social welfare maximizing) auctions for this
setting is trivial: simply run an independent second-price auction for each good. Each
buyer will have the incentive to bid her true value for each good, and each good will be
allocated to the buyer who has the maximum value for it.

The problem with this simple mechanism is that each bidder has to provide n values,
one for each type of good, as her bid. This is especially problematic in applications such
as sponsored search auctions, where the number of different types of goods is quite large
or possibly infinite.> This motivates the following problem, which is the main subject of

* Part of this work was done while the author was at Yahoo! Research.

3 The valuations of bidders (i.e., advertisers) in sponsored search auctions are quite close to
being additive. The only non-additive valuations that sponsored search systems allow bidders
to specify are those involving budget constraints. However, binding budget constraints seem to
be rare. Furthermore, since in sponsored search auctions advertisers can bid on any user query,
the number of goods that are available for sale is essentially infinite.



this paper: what is the maximum social welfare that can be achieved with a mechanism
that is restricted to ask each bidder for only a small amount of information?

To make this more precise, we denote the value of a bidder ¢ for a good j by v;;, and
assume a prior on the n-tuple (v;;); of values, i.e., we assume these values are picked
from a given joint distribution. This prior is supposed to capture the information on how
the valuation of a bidder on different goods are correlated. The algorithm is allowed to
query each bidder 7 for a fixed number £ of v;;’s, and based on the responses it gets,
it allocates each good to one bidder. We evaluate the algorithm based on the social
welfare it achieves, i.e., the sum of the valuations of the bidders for the goods they
receive. Our objective is to design an allocation algorithm that achieves the maximum
expected social welfare (where the expectation is over the draw of the valuations from
the prior) among all algorithms that ask each bidder for at most £ of her values.

Designing the optimal algorithm in the above model is often a complicated task,
and depends on the type of prior we assume on the valuations. The main results of this
paper include exact and approximate solutions of this problem for a few simple yet
important classes of distributions, and a proof that for a more realistic class of distri-
butions, clustering-based bidding languages — akin to the concept of broad match or
advanced match that is currently in use — provide a reasonable bicriteria approximation
for the optimal algorithm. Although the major technical contribution of the paper is on
the problem of designing the optimal or approximately optimal allocation algorithms,
we will also observe that these algorithms, combined with suitable payment schemes,
result in mechanisms with good incentive properties.

Related work. Ronen [4] and Ronen and Saberi [5] studied the design of revenue-
optimal mechanisms when the mechanism designer has communication complexity
constraints in accessing the distribution of bidders’ values. Mechanism design for single-
item auctions under a constraint on the number of bits that each bidder can send to the
auctioneer was studied by Blumrosen, Nisan, and Segal [1]. Earlier, Nisan and Segal [3]
studied the communication complexity of maximizing social welfare in combinatorial
auctions. The main difference between this line of work and ours is that in their models
the constraint is on the communication complexity of the bidders, whereas our model
focuses on query complexity, if each bidder is thought of as an oracle that can be queried
for their value for each good. This is because in our motivating application (sponsored
search auctions), the costly operation for an advertiser is to compute their value for a
keyword, and not transmitting information to the auctioneer.

The setting of additive utilities for a large number of goods (motivated by sponsored
search auctions) was studied by Mahdian and Wang [2]. Their focus is on a specific
class of bidding languages called clustering-based bidding languages that are similar
to the broad match scheme used in sponsored search systems. We address a more basic
question: finding the most socially efficient algorithm without imposing any constraint
other than the complexity constraint on the bidding language.

2 Model

Assume there are m buyers numbered 1 through m, and n different goods 1, . .., n that
are offered for sale (n > m). Without loss of generality, we can normalize the supply



of each good to one. Buyer ¢ has a non-negative real value v;; for good j. We assume
that the valuations of buyers are additive, i.e., the value that buyer ¢ has for a set S of
goods is simply . 5 vij.

We assume a prior on the values v;;. For simplicity, we assume that the valuation
of different bidders are independently and identically distributed, i.e., there is a joint
distribution D over the set of all n-tuples of non-negative numbers, and for each buyer
i, the tuple of valuations (v;;); is drawn independently from D.

Given the distribution D and an integer k, the problem is to design an algorithm
that asks each buyer for at most & of their values (i.e., asks buyer ¢ for v;; for at most
k different values of j to be chosen by the mechanism), and among all such algorithms
achieves the maximal social welfare. This problem can be studied both in an adaptive
and in a non-adaptive framework. We focus on the non-adaptive variant, i.e., the algo-
rithm asks all the questions at once and then receives the answers. The adaptive version
(where the algorithm asks the questions one by one and can use the earlier answers to
decide what question to ask next), although theoretically intriguing, is of less practical
value in sponsored search systems.*

Perhaps the simplest possible case is when the distribution D is a product distri-
bution, i.e., all v;;’s are drawn independently. Even in this case, finding the optimal
algorithm is non-trivial. However, we show (Section 3) that a mechanism based on
spreading the questions among different goods is optimal. A more interesting class of
distributions correspond to the case where each buyer ¢ has a one-dimensional type t;
drawn from a distribution D*, and the values of buyer ¢ on various goods are indepen-
dent conditioned on the type t; (Section 4). Finally, we study a model where the set of
goods are partitioned into a number of clusters, and the valuation of each buyer on each
cluster followed the model of buyers with types described above, while the values are
independent for distinct clusters (Section 5).

Incentive properties. Most of this paper is devoted to the problem of designing the
optimal allocation algorithm subject to the number of queries this algorithm can make.
Ideally, we would like to match such an algorithm with a suitable payment scheme
to turn it into an incentive-compatible mechanism, i.e., a mechanism where bidders
are better off answering the questions truthfully. However, in our setting, we need to
be careful about the notion of incentive compatibility, for the following reason. If we
assume that the bidder knows her value for all goods, then for any mechanism that infers
something from the values of queried goods about the unknown values, there is some
chance that the queried goods under- or over-represent the values of other goods. In such
cases the bidder might have an incentive to bid untruthfully to “correct” the mistake of
the allocation algorithm. This intuitive argument can be made precise to show that with
the strict notion of incentive compatibility in dominant strategies, essentially no non-
trivial learning can be done.

* This is mainly because the algorithm cannot interleave the questions asked from two different
advertisers in any way it wants, due to timing constraints. However, a hybrid between the
adaptive and non-adaptive models, where the algorithm can use the answers provided by an
advertiser to decide its next questions of the same (but not other) advertisers might be feasible
in practice. We will comment on this in Section 6.



However, it is possible (details omitted) to get around this problem by weakening
the incentive requirement to one of the following:

(1) If the bidder does not know her value for goods about which she is not queried,
then her best strategy is to answer the questions truthfully; this can be thought of as an
ex ante notion of incentive compatibility.

(2) As the number of questions that can be asked of each bidder grows, the incentive
to deviate from truthfulness quickly approaches zero.

3 Independent Valuations

In this section we consider the case where the prior distribution D is a product distri-
bution, i.e., each value v;; is picked independently from a distribution. This is a simple
case since there is no learning involved: the answers that the mechanism receives on
one good cannot help with the allocation of other goods. However, the problem is still
non-trivial as it involves optimally distributing the queries among different goods.

For simplicity of exposition, we further assume that all v;;’s are independently and
identically distributed according to a distribution with cdf F' and pdf f. The assumption
that the distributions for different goods are identical is not necessary, but will simplify
the statement of our results. The following lemma gives the optimal allocation of the
goods, given the questions that the mechanism asks and their answers.

Lemma 1. Suppose that values of bidders for a good come from a distribution with
cdf F(-) and pdf f(-) and expectation p. If the auctioneer knows the values of i < m
bidders in a set S for this good, then the expected welfare W (i) of allocating this good is
maximized when it is given to the bidder in S with the maximum known value v if v > p
or to an arbitrary bidder not in S if v < u. Furthermore, W (i) = M — flfw F(x)idz,
where M is the upper bound for the valuation (i.e., F(M) = 1).

Using this, we show that the expected welfare that the mechanism gets from a good is
a concave function of the number of queries it makes about the value of that good.

Lemma 2. The function W (i) = M — flfw F(z)'dx is a concave function of i, i.e.,
W(E)—WE+1) > Wi+ 1) — W(i + 2) for every i.

Theorem 1. If all values v;; are drawn iid from a distribution F' with expectation i,
then any mechanism of the following form is optimal: ask each bidder for their value
for k goods in such a way that each good is asked about |km/n| or [km/n] times,
and then allocate each good as prescribed by Lemma 1.

If getting an approximation to the optimal social welfare is enough, we show that when
km < n, a simple mechanism that allocates all the goods arbitrarily without asking
any questions about the values extracts at least half of the social welfare of the optimal
mechanism. In other words, when n is large, a mechanism with limited knowledge
about values cannot do much better than a random mechanism.



Lemma 3. If n > mk, and all the values v;; are independent, a mechanism that al-
locates the good randomly to the bidders extracts welfare at least OPT/2, where OPT
is the welfare of optimal mechanism subject to the same constraints. Furthermore, the
bound is tight.

The assumption n > km in the this lemma (also in Theorem 3) is indeed necessary.

4 Bidders with Types

In reality, buyers’ valuations for different goods are not independent. For example, if a
buyer has high valuation for a good, she is more likely to have high valuation for other
related goods as well. To capture this, we consider the following class of distributions:
each buyer ¢ has a one-dimensional fype ¢; drawn from a distribution D* over non-
negative numbers. Conditioned on the type ¢;, the values of this buyer for the goods are
independently and identically distributed according to some distribution D(¢;). This is
a good model for settings where all the goods are related. In this case, the buyer i’s base
value for the goods is determined by the type t;, and her value for an individual good
depends on her base value as well as another factor that is independently distributed.
E.g., the value of the buyer for a good can be equal to her base value plus an iid noise.
Another important example in the context of sponsored search is when the base value
of the buyer (the advertiser) is her value per conversion, and her value for an individual
good (keyword) is her value per conversion times a keyword-specific conversion rate.’
As in Section 3, we give an exact optimal allocation algorithm and a 2-approximation,
in the case that the number of goods n is larger than mk. We start with a lemma that
gives an upper bound on the social welfare of the optimal algorithm. Before stating the
lemma, we need to define a few random variables a; ;’s, u;’s, fi;’s, and fi:

Definition 1. Consider the following random experiment: for everyi =1,...,m, gen-
erate a random number t; according to D*, and then for every j = 1,..., k, generate
a; ; iid according to D(t;). Let the random variable y; denote the expected value of a
random variable distributed according to D(t) where t is drawn from D*, conditioned
on k samples of this distribution (generated with the same t) being a; 1, ..., a; . Fi-
nally, let i = maxj—1, . m{p;} and fi; = max;x;{p;}. Note that the random vari-
ables 1;’s, [i;’s, and [i are functions of the random variables a; ;’s.

Lemma 4. Assume n > mk. Then the social welfare of any algorithm that asks at most
k questions from each buyer is at most E[Y ;- | Z§:1 max(a;,j, fti) + (n — km)i].

Theorem 2. Assume n > mk. The following algorithm is optimal: query each buyer
for the values of k goods in such a way that no good is queried more than once, compute
the values of ;’s as in Definition 1, and allocate each good j either to the bidder who
queried about j, or to the one who has the maximum value of j;, whichever is larger.

5 One might argue that the conversion rate of an advertiser for different keywords are not inde-
pendent. This is in fact true, however, in sponsored search systems it is common to assume
that conversion rates are separable, i.e., the conversion rate of an advertiser for a keyword is
the product of an advertiser-specific conversion rate and a keyword-specific one. Such a sys-
tem can be captured by our model by letting the type t; be the value per conversion times the
advertiser-specific conversion rate.



Since the algorithm given in the above theorem might be too complicated for imple-
mentation, or impractical as it treats different buyers asymmetrically, we also present a
simple and natural algorithm that is a 2-approximation to the optimal welfare.

Theorem 3. If n > k(m + 1), the algorithm A that asks all the buyers about their
value for the first k goods, allocates each of these goods to the buyer with the highest
value, and allocates all other goods to the buyer with the highest value of u; (as in
Definition 1) gets a welfare that is at least half of the welfare of the optimal algorithm
in expectation. Moreover, the bound is tight.

Proof. Consider an optimal algorithm OPT. It is clear that the welfare that A4 receives

from the first k£ goods is at least as large as the welfare that OPT gets on those goods. For

the remaining goods, it is easy to adapt the proof of Lemma 4 to show that the welfare

that OPT gets from goods k + 1,...,nis at most B[} ;" | Zle max(a; j, f;) + (n —

k — km)f], where a; ;’s, p;’s, fu;’s, and ji are as in Definition 1. This is at most
B[, S (@i, + i) + (n—k—km)il. (1)

We claim that E[a; ;] = E[g;]. This can be proved using the following experiment:
draw ¢ from D* and then k + 1 numbers a; 1, ..., a; 11 from D(t). Clearly, we have
Ela; ;] = E[a; k+1]. On the other hand, fixing the values of a; 1, ..., a; i, the value of
@ k+1 has a distribution with mean 11;. Therefore, taking the expectation over values of
ai1,-- -0k wehave Ela; 4+1] = E[u;]. Therefore, E[a; ;] = E[u;] < E[4].

Using this inequality, the expression in (1) is at most (n — k — km + 2km)E[i] <
2(n — k)E[f], where the latter inequality follows from the assumption n > k(m + 1).

On the other hand, we analyze the expected welfare that algorithm A receives from
goods k + 1, ..., n as follows: the answers that A gets on queries that it makes on the
first k£ goods are distributed as the a;_;’s of Definition 1. Therefore, fixing the values of
a; ;’s, the expected welfare that A gets on any of the goods k + 1, ..., n is precisely /.
Thus, the total expected welfare of A on these goods is (n — k)E[fi].

To sum things up, the total welfare of A on the first & goods is at least that of OPT
on these goods, and its total welfare on the other n — k goods is at least half that of OPT.
Therefore, A is a 2-approximation to OPT.

For the tightness, suppose there is only one type. Value of a bidder for a good is 0
with probability 1 — e and is 1 with probability €. Also, let n = k(m + 1). Since all
bidders are of the same type, A allocates all goods k& + 1,...,n to an arbitrary bidder
for expected welfare of (n — k)e = mke. Therefore, the total welfare of this algorithm
is at most k 4+ mke. On the other hand, OPT asks one question about each of the first mk
goods, and gets an expected welfare of € + (1 — €)e on each such good. Therefore, the
total welfare of OPT is at least 2mke — mke2. Taking € = 1/y/m and letting m grow,
the welfare of .4 will tend to half that of OPT. ad

The proof of the above theorem also implies the following, which will be useful in
Section 5.

Lemma 5. Assume n > km. An algorithm that knows the types of all buyers and
allocates all goods to the buyer that has the maximum expected value (given the type)
without asking any question gets a welfare of at least half of the optimal algorithm.



Non-uniform supplies. We can extend these results to a more general model in which
every good j has some supply s;. In other words, value of buyer 2 for good j is s;v;;. By
slightly modifying algorithm .4 in Theorem 3 and replacing the condition n > (m+1)k
by >y s; > (m+1) Z§:1 s;, we can show that algorithm A can be adopted for this
more general model. More formally, assume without loss of generality that s; > --- >
Sn. If algorithm A in Theorem 3 asks all the buyers about the k£ goods with largest
amount of supply, namely s1, ..., sk, it gets a welfare that is at least half of the welfare
of the optimal algorithm in expectation.

5 A Cluster Model

The model studied in Section 4 captures situations where all goods are related, and
therefore buyers’ valuations for these goods are correlated by their fypes. Our final
model captures the more realistic setting where goods can be partitioned into a number
c of clusters, with each cluster containing a number of related goods. Different clusters
are unrelated, and each buyer has a type for each cluster. The valuations of a buyer for
the goods within a cluster follows the model from Section 4 with the buyer’s type for
the cluster. This is a good model for applications such as sponsored search, where the
goods (keywords) can be partitioned based on their topic, with keywords within a topic
being related and keywords from different topics being essentially independent.

Formally, there are c disjoint clusters, with the jth cluster containing n; goods.
Buyer i has a type ¢;; for cluster j, drawn iid according to a distribution D*.® Given
these types, the value of this buyer for each good in cluster j is picked iid according
to a distribution D(t;;). We denote the expected value of this distribution by ;. Note
that 15 is a function of ¢;; and is therefore a random variable.

The problem of designing the optimal algorithm boils down to deciding how the
queries of each buyer should be allocated across different clusters. In one extreme, we
might want to ask many queries about the same cluster to get a better estimate of the val-
ues of the buyer for that cluster, and forgo other clusters. In the other extreme, we might
want to spread the queries evenly across different clusters, to get a rough estimate of
the values of the buyer for all clusters. Interestingly, there are cases where each of these
strategies outperforms the other by an arbitrary factor. This suggests that finding the
optimal algorithm in the cluster model is a difficult problem, as the optimal allocation
of the queries can be highly dependent on the nature of underlying distribution.

On the positive side, we can show that if we are allowed to ask more queries than
OPT, enough to ask a logarithmic number of queries for each cluster, then we can get a
good estimate of 11;;°s for each cluster and therefore the machinery from Section 4 gives
us a good approximation to the optimal welfare. This result (Theorem 4) is essentially a
bicriteria approximation of the optimal algorithm. To prove this result, we start with the
following lemma (proof omitted), which shows that an algorithm that knows all y;;’s
can guarantee welfare of at least half of the optimal algorithm, if all clusters are large.

® It is not hard to see that our result holds in the more general case where the distribution of
types for different clusters are different (but still independent).



Lemma 6. Suppose we are given all expected values |i;;, and for every j, n; > mk. An
algorithm A that allocates all goods of each cluster to the buyer with highest expected
value gets welfare of at least OPT /2 where OPT is the optimal expected welfare.

Let L denote the maximum, over the choice of the type ¢, of the ratio between the
maximum value from the distribution D(t) and the expected value of D(t); this param-
eter captures how difficult it is to estimate the mean of the distribution by sampling.

Theorem 4. Assume n; > mk,Vj. There is an algorithm A that asks O(cL?*e? logm)

queries, and achieves at least a % fraction of the welfare of the optimal algorithm.

6 Conclusions

We studied the problem of designing the optimal allocation algorithms for an auction
setting where buyers have additive values, but the number of different types of goods
is large and we are limited in the number of queries we can make to each buyer. We
believe this is a promising direction for research, as in many realistic situations, we are
faced with valuations that lie in a high-dimensional space, even though the distribution
that these valuations come from can allow for “learning” the valuation given only a
small-dimensional sample. The problem we studied is essentially about the interaction
between this learning aspect, and the optimization aspect of queries. In other words, in
our optimization, we must take into account not only the additional information that a
query gives us, but also the amount of additional welfare it can lead to.

There are many open problems left for future research. For example, our results
for the model of typed buyers (Section 4) cannot handle the case with non-identical
distributions, except for the case of non-uniform supplies. Extending the results to such
a setting seems difficult, as it requires ways to capture the information contents of each
distribution. Also, it would be nice to get rid of the n > mk assumption in our results.
In particular, in Section 4, it might be possible to prove that the algorithm that spreads
the questions almost evenly across the goods is optimal. Finally, it would be interesting
to solve the adaptive variant of the problem, or at least the more practical “hybrid”
between adaptive and non-adaptive variants where the questions the mechanism asks
can depend on the previous answers of the same buyer but not the other buyers.
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